voltbricks

DATASHEET

VDV (HV) Series VDV(HV)1000

High voltage input DC/DC converters

Description

Compact isolated DC/DC converters of VDV(HV) Series for industrial and special purpose applications. Despite the small size (168×122×16 mm) the maximum output power of modules reach up 1000 W and they are able to operate in a wide case operating temperature range (-60...+125°C). These modules have functions of remote on/off, remote feedback, short circuit, overcurrent and thermal protection and can operate in parallel mode. Without optocouplers in the converter's circuit it can safely operate in conditions of ionizing radiation and high temperature. Units have variable protections from different factors: vibration, dirt, moisture fog and salt fog.

These modules undergo special thermal and limit test including burn-in test with extreme on/off modes.

Engineered in accordance with

- MIL-STD-810G
- MIL-STD-461F (CE102)
- MIL-STD-704F

Description of VDV(HV) Series on the manufacturer's website https://voltbricks.com/product/vdvh

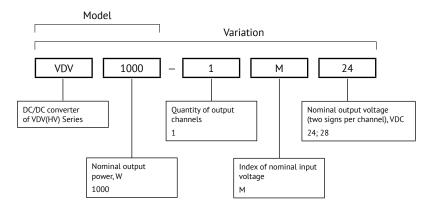
Features

- 5 year warranty
- Output current up to 40 A
- 270 VDC (index "M") input compliant with MIL-STD-704F
- Low-profile design (16 mm) with cylindrical pin outs
- Case operating temperature -60...+125°C
- 125 °C baseplate operation without derating
- Magnetic feedback without optocouplers
- Short circuit protection, overvoltage, thermal protection
- Remote on/off
- Output voltage adjustment
- Typical efficiency 89% (Uout.=24 VDC)
- Parallel operation, remote feedback
- Parallel or series mode
- Power good signal
- Polymer potting sealing

Order registration

+65 6950 0011, Global Operations Team

Technical support


support@voltbricks.com

Reliability test

https://support.voltbricks.com/Reliability-Test_ENG.pdf

Ordering information

For more information please contact our Global Operations Team

+65 6950 0011 info@voltbricks.com

Output power and current

Model	VDV1000		
Output power, W	960 1000		
Output voltage, VDC	24	28	
Max. output current, A	40	35,7	

Index of nominal input voltage*

Parameter	Index "M"
Nominal input voltage, VDC	230
Input voltage range, VDC	175350
Transient deviation (1 s), VDC	175400
Typical efficiency for Uout.=24 VDC	89%

^{*} Reflected input ripple current (10-10000 Hz) -8% Uin. nom

Specifications

All specifications valid for normal climatic conditions (ambient temp. 15...35 °C; relative humidity 45...80%; air pressure $8.6 \times 10^4...10.6 \times 10^4$ Pa), Uin. nom, lout. nom, unless otherwise stated. It is important to note that the information herein is not full.

Output specifications

Parameter		Value	
Output voltage adjustment		±5% Uout. nom	
Regulation	Input voltage variation (UminUmax)	max ±2% Uout. nom	
	Load variation (10100% Imax)		
	Total regulation	±6% Uout. nom	
Ripple and noise (p-p)		<2% Uout. nom	
Maximum capacitive load 24 VDC 28 VDC		250 uF 100 uF	
Start up time (remote)		max 0,1 s	
Overload protection level*		<1,8 Pmax	
Short circuit protection*		hiccup auto recovery	
Overvoltage protection		1,5 Unom	

^{*} Parameters are stated for the information purposes and could not be used at long term work, exceeding maximum output current, at work outside of a range of operating temperatures.

General specifications

Parameter		Value	
Case temperature	Operating	-60+125°C	
	Storage	-60+125°C	
Switching frequency		250 kHz ±10%	
Isolation capacitance	input/output	1500 pF	
Isolation voltage (60 s)	input/output input/case output/case	1500 VAC, 50 Hz 1500 VAC, 50 Hz 500 VAC, 50 Hz	
Isolation resistance @ 500 VDC	input/output	20 MOhm min, normal climatic conditions	
Thermal impedance	2,7°C/W		
Thermal protection level	118125°C, clamp, auto recovery		
Remote on/off	Off.: connection of pins "ON" and "−IN", I≤5 mA		
Vibration and dust proof, salt fog resistant	+		
Moisture proof (Tamb.=25°C)	98%		
Typical MTBF	1737900 hrs		
Failure rate	<0,05%		
Warranty	5 years		

Specifications (cont.)

Physical specifications

Parameter	Value
Case material	aluminium
Potting	epoxy polimer
Pin material	phosphor bronze, SnPb plated
Weight	max 690 g
Soldering temperature	260°C @ 5 s

Design topology

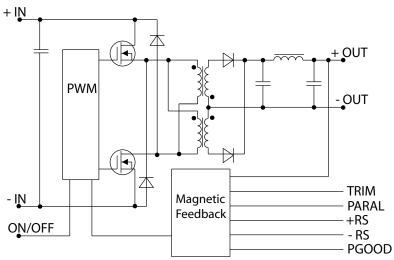


Figure 1. Design topology.

Datasheet for VDV(HV)1000

Service functions

Typical connection

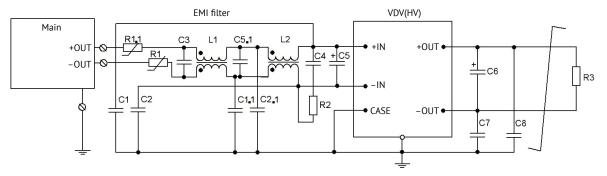


Figure 2. Typical connection with filtration unit.

R2	resistor	1 Ohm			
R1, R1.1	NTC-thermistor	4,7 Ohm			
C1, C2	ceramic capacitor	ceramic capacitor			
C1.1, C2.1	tantalum capasitor	02200 pF			
C7, C8	tantalum capasitor			22004700 pF	
C4	film capacitor Input voltage			0,010,15 uF	
C5	film capacitor*			12,2 uF	
	elecrolytic capacitor	Input voltage	110 VDC 230 VDC	470820 uF 100220 uF	
C6	tantalum capasitor Output voltage			22100 uF	
L1	common mode choke	0,42 mH			
L2	common mode choke			520 mH	
C3 C5.1	film capacitor Input voltage 110 VDC 230 VDC		12,2 uF		

 $^{^{\}ast}$ C4 is recommended to be installed in addition to C5 (electrolytic).

Service functions (cont.)

Remote control

Function of remote control by a signal allows to control the unit's operation using mechanical relay or electric switch of "open collector" type.

The unit should be powered off by connecting "ON" output to "-IN" output. The switch can carry current of up to 5 mA, the max voltage drop on the switch should be less than 1,1 V.

The unit is powered on by disconnecting the switch within the time less then 5 µs. Being disconnected the switch is applied by approximately 5 V, allowable current leakage through the switch should not be over 50 µA.

To arrange remote power off/on of several units simultaneously it is not allowed to use additional elements in the circuit to connect outputs "ON" and "-IN" and a switch.

If the function of remote power off/on is not used, "ON" output is allowed to be left unconnected.

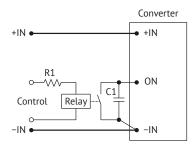


Figure 3 (a). ON/OFF control by relay.

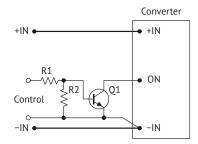


Figure 3 (b). ON/OFF control by bipolar transistor.

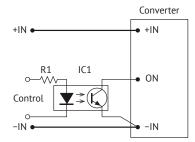


Figure 3 (c). ON/OFF control by optocoupler.

Adjustment

Adjustment of output voltage of a power supply unit within the range of at least ±5% can be done by connecting "ADJ" output (if available) through "-OUT" output to increase output voltage, or through "+OUT" output to decrease the output voltage.

In case of using variable resistor Rvar and outside resistors (R1, R2) it is possible to fulfill the adjustment both to increase and decrease the output voltage.

If you need to control the output voltage of a power supply unit by a signal from external source of current or voltage, e.g. in micro-controller automated control systems using DAC, the external current or voltage signal should be supplied to the adjustment output relating to "-OUT" output, as shown in the drawings (e) and (d).

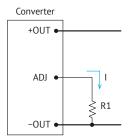


Figure 4 (a). Output voltage increase.

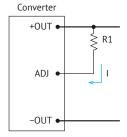


Figure 4 (b). Output voltage decrease.

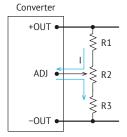


Figure 4 (c). Adjustment by resistive divider.

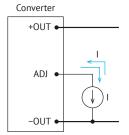


Figure 4 (d). Adjustment by current sourse.

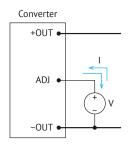


Figure 4 (e). Adjustment by voltage sourse.

Service functions (cont.)

External feedback

Application of external feedback allows to compensate for output voltage drop on extended power lines and isolating diodes. The maximum value of compensation for output voltage drop is no less than 5%. If it's necessary to provide better AJ, "+RS" and "-RS" pins should be connected to the load with twisted-pair wire which has cross-section area no less than 0,1 mm².

Typical connection diagram of external feedback application for power supply system with extended power lines is shown in picture:

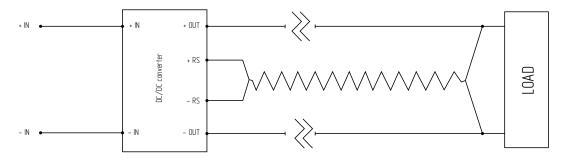


Figure 5. Typical connection diagram of external feedback application.

If there no need to apply external feedback, "+RS" and "-RS" pins should be connected with "+IN" and "-IN" directly according to the picture. It is strictly forbidden to leave "+RS" and "-RS" pins disconnected.

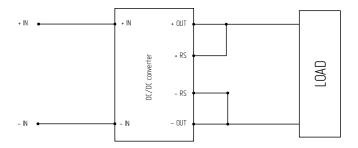
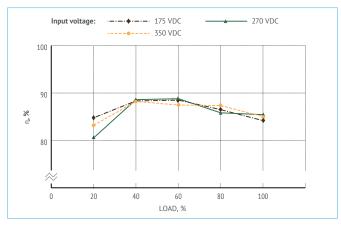
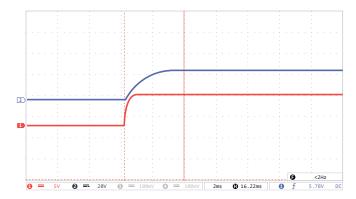


Figure 6. Typical connection diagram without external feedback application.

Efficiency

VS load




Figure 7. Efficiency of VDV(HV)1000-1M28.

Datasheet for VDV(HV)1000

Oscillograph charts

Testing conditions Uin.=270 VDC, Iout.=37 A, Tamb.=25°C, Uout.=27 VDC, Cout.=100 uF

The database of regulated parameters of the maunfactured products is available. Pls. contact your personal manager or customer support service to get necessary information.

Figure 8 (a). Oscillograph chart of setting output voltage after supplying remote control signal to ON-output.

Ray 1 (red) — output voltage. Scale 5 V/div.

Ray 2 (blue) - voltage at ON-output. Scale 20 V/div.

Time scale t=2 ms/div.

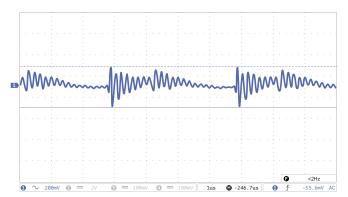
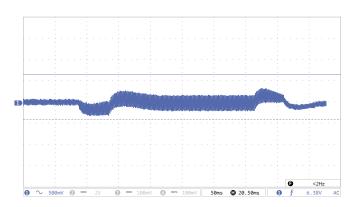



Figure 8 (b). Oscillograph chart of output voltage ripple.

Ray 1 (blue) — ripple of output voltage. Scale 200 mV/div.

Time scale 1 us/div.

Measuring technique: see Electrical Test Screen.

Figure 8 (c). Oscillograph chart of voltage transient deviation during load "drop/rise".

Ray 1 (blue) — output voltage. Scale 500 mV/div. Time scale t=50 ms/div.

Modes

- "drop" output current variation (10...100%) Inom;
- "rise" output current variation (10...100%) Inom;
- build-up time 500 us.

Noise spectrogram

Testing according to MIL-STD-461F CE102. (Tcase=25°C, Vin.=+12 V, full load, unless otherwise specified)

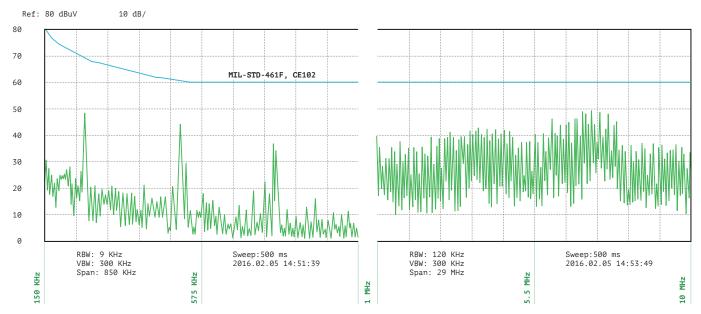


Figure 9. Spectrogram of VDV(HV)1000-1M28 with typical connection diagram.

Outline dimensions

Models packed in reinforced case with flanges

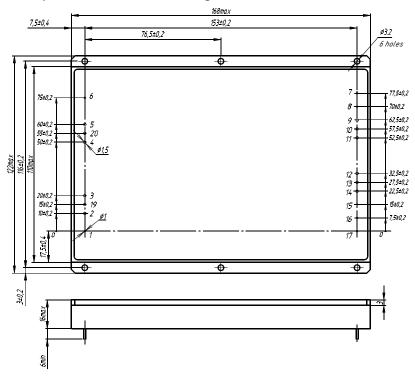


Figure 10. Single-output models.

Pin out

Pin #	1	2, 3, 19	4, 5, 20	6	7	8	9, 10, 11	12, 13, 14	15	16	17
Function	ON	-IN	+IN	CASE	PGOOD	+RS	+OUT	-OUT	-RS	TRIM	PARAL

Heatsink

Part number	Ribs configuration	Dimensions A×B×H×D, mm	Area, cm ²	Weight, g
752695.009	Longitudinal	168×125×46×6	1890	1200

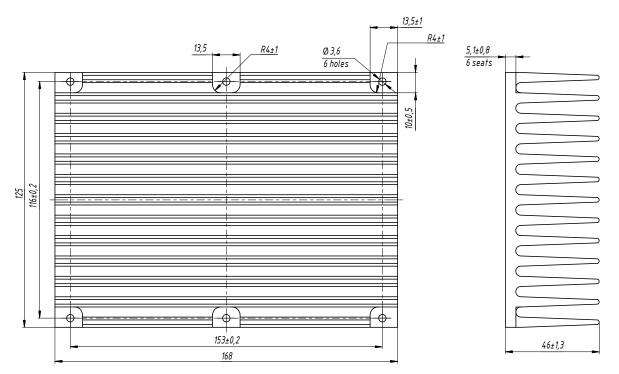


Figure 11. 752695.009.

voltbricks

www.voltbricks.com info@voltbricks.com

VOLTBRICKS PTE. LTD.

105 Cecil street

#15-01 The OCTAGONE

Singapore 069534

+65 6950 0011

Manufacturer of reliable DC/DC converters and power supply systems

This datasheet is valid for the following units: VDV1000-1M24; VDV1000-1M28.